skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xue, Zhaokun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We describe a recommendation system for HydroShare, a platform for scientific water data sharing. We discuss similarities, differences and challenges for implementing recommendation systems for scientific water data sharing. We discuss and analyze the behaviors that scientists exhibit in using HydroShare as documented by users’ activity logs. Unlike entertainment system users, users on HydroShare tend to be task-oriented, where the set of tasks of interest can change over time, and older interests are sometimes no longer relevant. By validating recommendation approaches against user behavior as expressed in activity logs, we conclude that a combination of content-based filtering and a latent Dirichlet allocation (LDA) topic modeling of user behavior—rather than and instead of LDA classification of dataset topics—provides a workable solution for HydroShare and compares this approach to existing recommendation methods. 
    more » « less